

Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

(A joint stock company incorporated in the People's Republic of China with limited liability)
(Stock Code: 6887)

**VOLUNTARY ANNOUNCEMENT
LAUNCH OF A WORLD-LEADING
AI-POWERED R&D PLATFORM
FOR PROTAC MECHANISM**

This announcement is made by Sunshine Lake Pharma Co., Ltd. (the “**Company**”, together with its subsidiaries, the “**Group**”) on a voluntary basis.

As the Group continues to advance its AI strategy, it has launched an AI-powered Research and Development (“**R&D**”) platform tailored to PROTAC mechanisms. This platform achieves a closed-loop system from data foundation to dry-lab and wet-lab processes, with data scale and structural granularity significantly surpassing existing public databases. It provides a comprehensive and systematic data foundation for AI-driven rational design of PROTACs, accelerating the rational design and clinical translation of PROTAC lead compounds.

R&D Background: Overcoming the “Undruggable” Challenge — Urgent Need for High-Quality Data Foundations for Intelligent PROTAC R&D

Traditional small-molecule drugs rely on clearly defined binding pockets in target proteins. However, 80% of disease-associated proteins in humans lack suitable structural features and are thus considered ‘undruggable’. PROTAC (Protein Degradation-Targeting Chimeras) technology leverages the cellular ubiquitin — proteasome system to induce target protein degradation, covering over 200 targets. It offers advantages including catalytic activity, resistance to drug tolerance, and low toxicity. However, its reliance on efficient ternary complex formation and spatial orientation results in complex design challenges. Fragmented experimental data and the absence of unified standards have constrained AI model application, leaving development heavily reliant on empirical trial and error.

R&D Objective: A New AI-Driven Paradigm from Data Foundation to “Dry-lab and Wet-lab Loop”

The Group’s PROTAC Intelligent R&D Platform is designed to establish a high-quality, structured PROTAC-specific database (HEC-PROTAC DB), which systematically integrates molecular structures, degradation activities, physicochemical properties, and pharmacokinetic parameters from clinical pipelines, patents, and literature, whilst conducting detailed modular analysis of POI ligands, Linkers, and E3 ligands. The database currently houses over 30,000 PROTAC molecules, encompassing more than 500 POI ligands, 1,000+ Linkers, 200+ E3 ligands, and 150+ targets. Both its data scale and structural granularity significantly surpass existing public databases. Building upon this foundation, an AI-driven molecular generation and screening platform tailored to PROTAC mechanisms has been developed. This establishes a dry-lab and wet-lab loop integrating “data — generation — computational validation — experimental feedback”, accelerating the rational design and clinical translation of PROTAC lead compounds.

Strategy in the AI Sector

The Group continues to increase its investment in AI R&D platforms and deepen strategic collaborations in AI-driven drug R&D. We have developed six proprietary models covering the entire drug discovery chain, including molecular design, scaffold hopping, metabolism simulation, toxicity avoidance, and formulation design. Through deep cooperation with industry benchmarks such as Beijing DP Technology Co., Ltd. and Huawei Cloud Computing Technology Co., Ltd., the Company is comprehensively building AI scientific computing models for drug R&D to create a new “AI + Healthcare” ecosystem. The Company’s first AI-driven small molecule drug, HEC169584, intended for the treatment of metabolic-associated steatohepatitis (MASH), has entered Phase I clinical trials. Preclinical research results indicate that HEC169584 exhibits high in vitro activity against THR- β cells and strong liver targeting, which can reduce the impact on the thyroid axis, heart, and other tissues.

By order of the Board
Sunshine Lake Pharma Co., Ltd.
Dr. ZHANG Yingjun
Chairman

Dongguan, the PRC
14 January 2026

As at the date of this announcement, the executive directors are Dr. ZHANG Yingjun and Dr. LI Wenjia, the non-executive directors are Mr. ZHANG Yushuai, Mr. TANG Xinfa, Mr. ZHU Yingwei, Mr. ZENG Xuebo, Ms. DONG Xiaowei and Ms. WANG Lei, and the independent non-executive directors are Dr. LI Xintian, Dr. MA Dawei, Dr. YIN Hang Hubert, Dr. LIN Aimei and Dr. YE Tao.